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Abstract. For all 1 ≤ m ≤ n − 1, we investigate the interaction of locally finite

measures in Rn with the family of m-dimensional Lipschitz graphs. For instance, we

characterize Radon measures µ, which are carried by Lipschitz graphs in the sense that

there exist graphs Γ1,Γ2, . . . such that µ(Rn \
⋃∞

1 Γi) = 0, using only countably many

evaluations of the measure. This problem in geometric measure theory was classically

studied within smaller classes of measures, e.g. for the restrictions of m-dimensional

Hausdorff measure Hm to E ⊆ Rn with 0 < Hm(E) < ∞. However, an example of

Csörnyei, Käenmäki, Rajala, and Suomala shows that classical methods are insufficient to

detect when a general measure charges a Lipschitz graph. To develop a characterization

of Lipschitz graph rectifiability for arbitrary Radon measures, we look at the behavior

of coarse doubling ratios of the measure on dyadic cubes that intersect conical annuli.

This extends a characterization of graph rectifiability for pointwise doubling measures

by Naples by mimicking the approach used in the characterization of Radon measures

carried by rectifiable curves by Badger and Schul.
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1. Introduction

A general goal in geometric measure theory that has not yet been fully achieved is to

understand in a systematic way how generic measures on a metric space interact with a

prescribed family of sets in the space, e.g. rectifiable curves, smooth submanifolds, etc.

For instance, we could ask: Is a measure positive on some set in the family? Do there exist

countably many sets in the family whose union captures all of the mass of the measure?

For Hausdorff measures and measures with a priori bounds on the asymptotic densities
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of the measure, much progress has been made. A description of this work as it stood at

the end of the last century can be found can be found in [Mat95]. Newer developments

in the theory of rectifiability of absolutely continuous measures include [AT15, Tol15,

TT15, ENV17, Ghi20, Goe19, Dab19, Dab20b]. An alternative regularity condition that

is usually a priori weaker than upper and lower density bounds is asymptotic control on

how much the measure grows when the radius of a ball is doubled. Recent investigations

on the rectifiability of doubling measures include [ADT16, ADT17, ATT20, Nap20]. For

Radon measures, which in general do not possess good bounds on density or doubling,

the situation is far less understood and examples show that classical geometric measure

theory methods are not strong enough to detect when measures charge Lipschitz images

of Euclidean subspaces or graphs of Lipschitz functions [MM88], [CKRS10], [GKS10],

[MO18], [Tol19]. On the positive side, we now possess a complete description of the

interaction of an arbitrary Radon measure in Euclidean space with rectifiable curves

[BS17]. This advance required a thorough understanding of the geometry of subsets of

rectifiable curves in Hilbert spaces [Jon90, Oki92, Sch07] and further blending geometric

measure theory with techniques from modern harmonic analysis. For a longer overview of

these and other related developments on generalized rectifiability of measures, including

fractional and higher-order rectifiability, see the survey [Bad19].

In this paper, we obtain a complete description of the interaction of Radon measures in

Rn with graphs of Lipschitz functions over m-dimensional subspaces for all 1 ≤ m ≤ n−1.

Moreover, the characterization of Lipschitz graph rectifiability that we identify depends

only on the value of the measure on dyadic cubes below a fixed generation. The key insight

is that to construct Lipschitz graphs that charge a measure, one must be able to equitably

distribute mass which appears in bad cones. For a detailed statement, see Theorem 1.5 and

the definition of cone defect. The connection between Lipschitz graphs and the geometry

of measures have been studied for over ninety years, appearing in foundational work

on the structure of Hausdorff measures in the plane [Bes28, Bes38, MR44] and higher-

dimensional Euclidean space [Fed47]. Radon measures on smooth Lipschitz graphs supply

a model for generalized surfaces in connection with Plateau’s problem [Alm69, Dav14].

Beyond the domain of geometric measure theory, understanding rectifiability of measures

with respect to Lipschitz graphs is crucial in the study of boundedness of singular integral

operators [CMM82, DS91, DS93, NTV14] and absolute continuity of harmonic measure

on rough domains [DJ90, Bad12, AHM+16, AAM19].

Cones and Lipschitz Graph Rectifiability. Throughout the paper, we fix integer

dimensions 1 ≤ m ≤ n − 1, where n denotes the dimension of ambient space and m

denotes the dimension of a Lipschitz graph. A bad cone X = X(V, α) is a set of the form

X = {x ∈ Rn : dist(x, V ) > α dist(x, V ⊥)},

where V ∈ G(n,m) is any m-dimensional subspace of Rn, V ⊥ ∈ G(n, n−m) denotes its

orthogonal complement, and α ∈ (0,∞). In other words, X is the set of points which are

relatively closer to V ⊥ than V . We exclude the degenerate case α = 0, which corresponds
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to X = Rn \ V . For every x ∈ Rn and bad cone X, we let Xx = x+X = {x+ y : y ∈ X}
denote the translate of X with center x. The importance of this family of cones is that

they yield a perfect test to determine when a set is contained in a Lipschitz graph.

Lemma 1.1 (Geometric Lemma). Let V ∈ G(n,m), α ∈ (0,∞), X = X(V, α), and

E ⊆ Rn be nonempty. There exists a Lipschitz function f : V → V ⊥ with Lipschitz

constant at most α such that E is contained in

Graph(f) = {(x, f(x)) : x ∈ V } ⊆ V × V ⊥ = Rn

if and only if E ∩Xx = ∅ for all x ∈ E. The conclusion also holds when α = 0.

Proof. Unwind the definitions or see e.g. the proof in [DL08, Lemma 4.7]. �

We adopt the convention that a Radon measure µ on Rn is a Borel regular outer measure

that is finite on compact sets. At one extreme, given a nonempty family F of Borel sets,

we say that µ is carried by F if there exist F1, F2, · · · ∈ F such that µ(Rn \
⋃∞

1 Fi) = 0.

At the other extreme, we say that µ is singular to F provided µ(F ) = 0 for every F ∈ F .

For any Radon measure µ and Borel set E ⊆ Rn, the restriction µ E defined by the

rule µ E(A) = µ(E ∩ A) for all sets A ⊆ Rn is again a Radon measure. The support

sptµ of a Radon measure is the smallest closed set such that µ(Rn \ sptµ) = 0.

A Radon measure µ on Rn is Lipschitz graph rectifiable of dimension m if µ is carried

by m-dimensional Lipschitz graphs, i.e. graphs of Lipschitz functions f : V → V ⊥ over

subspaces V ∈ G(n,m). For example, let Γ1,Γ2, . . . be a sequence of Lipschitz graphs in

Rn with uniformly bounded Lipschitz constants, let µi = Hm Γi denote the restriction of

the m-dimensional Hausdorff measure Hm to Γi, and let c1, c2, · · · ∈ (0,∞) be a sequence

of weights with
∑∞

1 ci < ∞. Then µ =
∑∞

1 ciµi is an m-dimensional Lipschitz graph

rectifiable Radon measure on Rn with support equal to
⋃∞

1 Γi. In particular, there exist

Lipschitz graph rectifiable measures with sptµ = Rn.

The following classical criterion for Lipschitz graph rectifiability is due to Federer

[Fed47, Theorem 4.7]. The theorem only applies to Radon measures satisfying the upper

density bounds 0 < lim supr↓0 r
−mµ(B(x, r)) < ∞ µ-a.e. Such measures are strongly

m-dimensional in the sense that µ is carried by sets of finite Hausdorff measure Hm and

singular to sets of zero Hm measure; e.g. this can be shown using [Mat95, Theorem 6.9].

Theorem 1.2 (Federer). Let µ be a Radon measure on Rn. If for µ-a.e. x ∈ Rn, there

exists a bad cone X = X(Vx, αx) such that

(1.1) lim sup
r↓0

µ(Xx ∩B(x, r))

rm
<

αmx
2 · 100m

lim sup
r↓0

µ(B(x, r))

rm
<∞,

then µ is carried by m-dimensional Lipschitz graphs.

For general locally finite measures, there is no uniform comparison between the measure

of a ball and the radius of the ball. Thus, it is natural to try to replace the normalizing

factor rm in Federer’s condition (1.1) with µ(B(x, r)). In this direction, Naples obtained
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a characterization of Lipschitz graph rectifiability for measures in Hilbert space with

pointwise bounded asymptotic doubling. See [Nap20, Theorem D].

Theorem 1.3 (Naples). Let µ be a Radon measure on Rn or a locally finite Borel regular

outer measure on the Hilbert space `2. Assume that µ is pointwise doubling, i.e.

lim sup
r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞ at µ-a.e. x.

Then µ is carried by m-dimensional Lipschitz graphs if and only if for µ-a.e. x there exists

a bad cone X = X(Vx, αx) such that

(1.2) lim
r↓0

µ(Xx ∩B(x, r))

µ(B(x, r))
= 0.

The restriction to pointwise doubling measures in Theorem 1.3 is crucial. For general

Radon measures in Euclidean space, which may be non-doubling, it is impossible to

characterize Lipschitz graph rectifiability using condition (1.2) by an example of Csörnyei,

Käenmäki, Rajala, and Suomala. See [CKRS10, Example 5.5].

Theorem 1.4 (Csörnyei et al.). There exists a non-zero Radon measure µ on R2 and

V ∈ G(2, 1) such that for all α > 0, condition (1.2) holds for µ and X = X(V, α) at

µ-a.e. x ∈ R2, and µ is singular to 1-dimensional Lipschitz graphs.

In a recent preprint [Dab20a], Dabrowski independently announced a characterization

of m-dimensional Lipschitz graph rectifiable measures, which are absolutely continuous

with respect to Hm. The characterization is in terms of a Dini condition on conical

densities of the form r−mµ(X ∩B(x, r)) and requires certain a priori bounds on the lower

and upper m-dimensional density on µ; for related examples, see [Dab20c]. In [DNOI19],

Del Nin and Obinna Idu supply an extension of Theorem 1.2 to C1,α graphs.

Conical Defect. Our goal is to promote the characterization of subsets of Lipschitz

graphs given by the geometric lemma to a characterization of Radon measures carried

by Lipschitz graphs. Motivated by the characterization of Radon measures carried by

rectifiable curves [BS17], we follow [Bad19, Remark 2.10] and design an anisotropic version

of the geometric lemma for measures. For any nonempty set Q ⊆ Rn, let XQ =
⋃
x∈QXx

denote the union of bad cones centered on Q. In particular, suppose that Q is a (half-open)

dyadic cube, i.e. a set of the form

Q =

[
j1

2k
,
j1 + 1

2k

)
× · · · ×

[
jn
2k
,
jn + 1

2k

)
, k, j1, . . . , jn ∈ Z.

We denote the side length 2−k of Q by sideQ. Let xQ denote the geometric center of Q.

For each X = X(V, α) with α ∈ (0,∞), let rQ,X > 0 be sufficiently large such that if R is

a dyadic cube of the same generation as Q and R intersects the conical annulus AQ,X ,

AQ,X = XQ ∩B(xQ, rQ,X) \ U(xQ, rQ,X/3),
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Figure 1. A conical annulus AQ,X(V,α) (on the left) and its discretization

∆∗Q,X(V,α) (on the right), where V = span~v, ~v = (cos(150◦), sin(150◦)), and

α = 1.

then R∩B(xQ, rQ,X/4) = ∅ and gap(R,Xx(V, α/2)c) ≥ diamQ for all x ∈ Q. Here B(x, r)

and U(x, r) denote the closed and open balls centered at x with radius r, respectively,

diamQ denotes the diameter of Q, Sc = Rn \ S for every set S ⊆ Rn, and gap(S, T ) =

inf{|s − t| : s ∈ S, t ∈ T} for all nonempty sets S, T ⊆ Rn. (In harmonic analysis,

gap(S, T ) is often denoted by dist(S, T ), but because the gap between sets fails the triangle

inequality, we believe it should not be called a distance; our terminology comes from

variational analysis, see e.g. [Bee93].) By Lemma 2.1 below, we may choose

rQ,X = 81
√
nmax(α, 1/α) sideQ.

Define the discretized conical annulus ∆∗Q,X to be the set of all such R, i.e. R ∈ ∆∗Q,X if and

only if R is a dyadic cube, sideR = sideQ, and R has nonempty intersection with AQ,X .

Of course, the discretized conical annulus covers the conical annulus, i.e. AQ,X ⊆
⋃

∆∗Q,X .

In addition, define the dual discretized conical annulus ∇∗R,X by setting

Q ∈ ∇∗R,X if and only if R ∈ ∆∗Q,X .

(In fact, it can be shown that ∇∗R,X and ∆∗R,X are the same set of dyadic cubes1, but ∇∗R,X
and ∆∗R,X play different logical roles in the proofs below, so we use separate notation.)

Note that each discretized region ∆∗Q,X and∇∗R,X is a finite family of cubes with cardinality

controlled by n and α. For every Radon measure µ on Rn, dyadic cube Q with µ(Q) > 0,

and bad cone X = X(V, α) with α ∈ (0,∞), we define the conical defect to be the quantity

Defect(µ,Q,X) =
∑

R∈∆∗Q,X

µ(R)

µ(Q)
∈ [0,∞).

We also set Defect(µ,Q,X) = 0 if µ(Q) = 0. The conical defect is a weighted measurement

of the mass of µ in the annular region
⋃

∆∗Q,X ⊇ AQ,X . It is anisotropic insofar as the

1We thank an anonymous referee for this observation.
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normalization of each term µ(R) that appears in the defect depends on the value of the

measure in cubes Q ∈ ∇∗R,X emanating in different directions from the cube R.

Conical Dini Functions. For every Radon measure µ on Rn and bad cone X = X(V, α)

with α ∈ (0,∞), we define the conical Dini function Gµ,X : Rn → [0,∞],

Gµ,X(x) =
∑

sideQ≤1

Defect(µ,Q,X)χQ(x) for all x ∈ Rn,

where the sum ranges over all dyadic cubes Q of side length at most 1 that contain x. The

definition of Gµ,X(x) is similar in spirit to the definition of the density-normalized square

functions in [BS15, BS16, BS17]. The magnitude of the conical Dini function determines

the interaction of µ with m-dimensional Lipschitz graphs. There are several possible ways

to formulate this. Perhaps the most important is the following.

Theorem 1.5 (Main Theorem). Let 1 ≤ m ≤ n − 1 be integers. Every Radon measure

µ on Rn decomposes uniquely as µ = µG + µ⊥G, where µG is a Radon measure carried by

m-dimensional Lipschitz graphs and µ⊥G is a Radon measure singular to m-dimensional

Lipschitz graphs. The component measures are identified by

µG = µ {x ∈ Rn : Gµ,X(x) <∞ for some bad cone X},
µ⊥G = µ {x ∈ Rn : Gµ,X(x) =∞ for every bad cone X}.

That is, there exists a sequence Γ1,Γ2, . . . of m-dimensional Lipschitz graphs such that

µG(Rn \
⋃∞

1 Γi) = 0 and µ⊥G(Γ) = 0 for every m-dimensional Lipschitz graph Γ.

The main theorem implies that to determine whether or not a measure charges some

Lipschitz graph or is carried by Lipschitz graphs it is enough to evaluate the measure on

only countably many sets, e.g. on dyadic cubes of side length at most 1.

Consequences. The first two corollaries are immediate applications of the main theorem.

For variations on Corollary 1.6 and 1.7, which account for the direction V and Lipschitz

constant α of the underlying Lipschitz graphs, see §§ 2 and 3.

Corollary 1.6. A Radon measure µ on Rn is carried by m-dimensional Lipschitz graphs

if and only if Gµ,X(x) <∞ for some bad cone X = X(Vx, αx) for µ-a.e. x ∈ Rn.

Corollary 1.7. A Radon measure µ on Rn charges some m-dimensional Lipschitz graph,

i.e. µ(Γ) > 0 for some Lipschitz graph Γ, if and only if there exists E ⊆ Rn with µ(E) > 0

such that Gµ,X(x) <∞ for some bad cone X = X(Vx, αx) for each x ∈ E.

A basic geometric measure-theoretic fact is that every m-dimensional Lipschitz graph

in Rn has locally finite m-dimensional packing measure. Further, typical points of sets of

finite s-dimensional packing measure have positive lower s-dimensional density. Hence we

discover the following relationship between the conical Dini functions for µ and the lower

m-dimensional density for µ. For details, see e.g. [BS15, Lemma 2.7, 2.8].

Corollary 1.8. Let µ be a Radon measure on Rn.
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(1) At µ-a.e. x ∈ Rn such that Gµ,X(x) <∞ for some bad cone X, we have

Dm(µ, x) = lim inf
r↓0

µ(B(x, r))

rm
> 0.

(2) At µ-a.e. x ∈ Rn such that Dm(µ, x) = 0, we have Gµ,X(x) = ∞ for every bad

cone X.

It is a difficult, open problem to obtain similar theorems for Radon measures and

Lipschitz images of Rm in Rn when 2 ≤ m ≤ n− 1. (However, the case when µ vanishes

on sets of zero m-dimensional Hausdorff measure is well understood, see e.g. [Mat95].)

The obstacle is back at the beginning of the paper: there is no known substitute for

Lemma 1.1 that characterizes subsets of Lipschitz images. Even the case m = 2, n = 3 is

wide open. For related work on subsets of alternative classes of higher-dimensional curves

and surfaces, see [AS18, BNV19, ENV19, Hyd20] and the references therein.

Organization. We establish sufficient conditions for Lipschitz graph rectifiability in §2,

followed by necessary conditions in §3. Using these results, we prove Theorem 1.5 in §4.

Finally, we discuss variations on the main theorem in §5.

2. Sufficient Conditions

We adopt the following standard notation. We write C = C(p, q, . . . ) to denote that

0 < C <∞ is a constant depending on at most the parameters p, q, . . . . The value of C

may change from line to line. The notation a .p,q,... b is short hand for a ≤ C(p, q, . . . ) b.

Lemma 2.1. Let X = X(V, α) be a bad cone over V ∈ G(n,m) with opening α ∈ (0,∞).

In the definition of the conical defect, we may choose the radius

rQ,X = 81
√
nmax(α, 1/α) sideQ.

For every dyadic cube Q and for every x ∈ Q,

Xx ∩B(x, sQ,X) \ U
(
x, 1

2
sQ,X

)
⊆ AQ,X , where sQ,X = rQ,X −

√
n sideQ.

There exists a constant C1 = C1(n, α) such that for every dyadic cube Q and R ∈ ∆∗Q,X ,

the Hausdorff distance between Q and R is at most C1 sideQ. Moreover, there exists a

constant C2 = C2(n, α) < ∞ such that ∆∗Q,X and ∇∗R,X have cardinality at most C2 for

every dyadic cube Q and R in Rn.

Proof. For ease of computation, pick coordinates on Rn so that Q = [−1
2
, 1

2
)×· · ·× [−1

2
, 1

2
)

is a “dyadic cube” of side length 1 with center at the origin. We return to the conventional

definition of dyadic cubes at the conclusion of the proof. Suppose that R is another dyadic

cube of side length 1 such that R ∩XQ \ U(0, r/3) 6= ∅. We first want to determine how

large r must be to ensure that R∩U(0, r/4) = ∅. Choose any point z ∈ R∩XQ\U(0, r/3).

For any x ∈ R, |x| ≥ |z| − diamR ≥ r/3−
√
n. Hence |x| > r/4 if r > 12

√
n. Impose this

lower bound on r.

Next we find how large r must be to guarantee that gap(R,Xb(V, α/2)c) ≥ diamQ

for every b ∈ Q. Continuing to work with z, pick a ∈ Q such that z ∈ Xa, which
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exists because z ∈ XQ. Fix b ∈ Q. To show that gap(R,Xb(V, α/2)c) ≥ diamQ, it

suffices to prove B(z, 2 diamR) ⊆ Xb(V, α/2). Fix w ∈ B(z, 2 diamR) and recall that

diamQ = diamR =
√
n. By repeated use of the triangle inequality and definition of Xa,

dist(w, Vb) ≥ dist(z, Va)− 3
√
n > α dist(z, V ⊥a )− 3

√
n ≥ α dist(w, V ⊥b )− 3(1 + α)

√
n

=
α

2
dist(w, V ⊥b ) +

α

2
dist(w, V ⊥b )− 3(1 + α)

√
n.

We now split into cases. From the displayed inequality, we see that w ∈ Xb(V, α/2) if

(α/2) dist(w, V ⊥b ) ≥ 3(1 + α)
√
n. Suppose otherwise that dist(w, V ⊥b ) < 6

√
n(1 + α)/α.

By the Pythagorean theorem, we have

dist(w, Vb)
2 = |w − b|2 − dist(w, V ⊥b )2 ≥ (|z| − |w − z| − |b|)2 − dist(w, V ⊥b )2

≥ (r/3− 3
√
n)2 − dist(w, V ⊥b )2.

We want dist(w, Vb) > (α/2) dist(w, V ⊥b ). Thus, we want r to be large enough so that(r
3
− 3
√
n
)2

≥
[(α

2

)2

+ 1

]
dist(w, V ⊥b )2.

Set ρ = r/3 − 3
√
n. Because dist(w, V ⊥b ) < 6

√
n(1 + α)/α and (1

4
α2 + 1) < (1 + α)2, it

suffices to choose ρ large enough so that ρ2 ≥ 36n(1 + α)4/α2. Taking square roots and

using the crude estimate (1 + α)2/α ≤ 4 max(α, 1/α), we see that it suffices to assume

that r ≥ 81
√
nmax(α, 1/α).

The computations above were for a dyadic cube Q of side length 1 centered at the

origin. By scale and translation invariance, we conclude that if we define

rQ,X = 81
√
nmax(α, 1/α) sideQ for all Q,

then R∩B(xQ, rQ,X/4) = ∅ and gap(R,Xx(V, α/2)c) ≥ diamQ for all R ∈ ∆∗Q and x ∈ Q.

Now, put sQ,X = rQ,X −
√
n sideQ for each dyadic cube Q. Fix a dyadic cube Q and

a ∈ Q. Suppose that y ∈ Xa ∩B(a, sQ,X) \ U(a, 1
2
sQ,X). On the one hand,

|y − xQ| ≤ |y − a|+ |a− xQ| ≤ sQ,X +
√
n sideQ = rQ,X .

On the other hand,

|y − xQ| ≥ |y − a| − |a− xQ| ≥
sQ,X

2
−
√
n sideQ

≥ rQ,X
2
− 3

2

√
n sideQ ≥ 39

√
nmax(α, 1/α) sideQ >

rQ,X
3

.

Thus, y ∈ Xa ∩B(xQ, rQ,X) \ U(xQ, rQ,X/3) ⊆ AQ,X .

For every dyadic cube Q and R ∈ ∆∗Q,X , we have Q ⊆ B(xQ,
√
n sideQ) and R ⊆

B(xQ, rQ,X +
√
n sideQ), because R intersects AQ,X and diamQ =

√
n sideQ. Therefore,

the Hausdorff distance between Q and R is at most C1(n, α) sideQ. By volume doubling,

it follows that ∆∗Q,X and ∇∗R,X have cardinality at most C2(n, α). �
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We say that T is a tree of dyadic cubes if T is a set of dyadic cubes ordered by inclusion

such that T has a unique maximal element, denoted by Top(T ), and if Q ∈ T , then P ∈ T
for all dyadic cubes Q ⊆ P ⊆ Top(T ). We may partition T =

⋃∞
0 Ti, where

sideQ = 2−i sideTop(T ) for all Q ∈ Ti.

An infinite branch is a decreasing sequence Q0 ⊇ Q1 ⊇ Q2 ⊇ · · · of cubes in T with each

Qi ∈ Ti. We define the set of leaves of T , denoted by Leaves(T ), to be

Leaves(T ) =
⋃{

∞⋂
i=0

Qi : Q0 ⊇ Q1 ⊇ Q2 ⊇ · · · is an infinite branch of T

}
.

Although the set of leaves is facially a union over uncountably many infinite branches,

because #Ti < ∞ for all i ≥ 0, one may prove that Leaves(T ) =
⋂∞
i=0

⋃
Ti; e.g., see the

argument at the top of [Rog98, p. 48]. Hence Leaves(T ) is an Fσδ Borel set.

Lemma 2.2. Let T be a tree of dyadic cubes in Rn, let µ be a Radon measure on Rn,

and let X = X(V, α) be a bad cone. If µ(R) = 0 for every Q ∈ T and R ∈ T ∩ ∆∗Q,X ,

then there is a Lipschitz function f : V → V ⊥ with Lipschitz constant at most α such that

µ(Leaves(T ) \ Graph(f)) = 0.

Proof. We may assume that Leaves(T ) 6= ∅, since otherwise the conclusion is trivial. Let

A = Leaves(T ) \
⋃
Q∈T

⋃
R∈T ∩∆∗Q,X

R. Then

µ(Leaves(T ) \ A) ≤
∑
Q∈T

∑
R∈T ∩∆∗Q,X

µ(R) = 0.

We will use Lemma 1.1 to show that A is contained in the graph of a Lipschitz function

over V with Lipschitz constant at most α. Let x ∈ A and pick an infinite branch Q0 ⊇
Q1 ⊇ Q2 ⊇ · · · such that {x} =

⋂∞
0 Qi. We must show that A∩Xx = ∅. For each dyadic

cube Q, write sQ,X = rQ,X −
√
n sideQ and note that sQ,X = C(n, α) sideQ � diamQ.

By Lemma 2.1, for each cube Qi in the infinite branch containing x,

A ∩Xx ∩B(x, sQi,X) \ U
(
x, 1

2
sQi,X

)
⊆ A ∩ AQi,X ⊆

⋃
T ∩∆∗Qi,X

⊆ Rn \ A.

Because sQi+1,X = 1
2
sQi,X for each i ≥ 0, it follows that A ∩Xx ∩ B(x, sQ0,X) = ∅. Also,

since A ⊆ Q0 and sQ0,X � diamQ0, we have A ∩ Xx \ B(x, sQ0,X) = ∅, as well. Thus,

A∩Xx = ∅ for all x ∈ A. By Lemma 1.1, there exists f : V → V ⊥ with Lipschitz constant

at most α such that A ⊆ Graph(f). Finally,

µ(Leaves(T ) \ Graph(f)) ≤ µ(Leaves(T ) \ A) = 0. �

We have reached the main technical result of the paper. The proof of Proposition 2.3

dictates the definition of the conical defect; see especially the computation in (2.1).

Proposition 2.3 (Drawing Lipschitz Graphs through Leaves of a Tree). Let T be a tree

of dyadic cubes in Rn and let µ be a Radon measure on Rn. If there exists a bad cone

X = X(V, α) such that
∑

Q∈T Defect(µ,Q,X)µ(Q) < ∞, then µ Leaves(T ) is carried

by graphs of Lipschitz functions f : V → V ⊥ with Lipschitz constant at most α.
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Proof. Suppose that T =
⋃∞

0 Ti, where Ti denotes the cubes of side length 2−i sideTop(T ).

Without loss of generality, we may assume that sideTop(T ) = 1 and µ(Q) > 0 for every

cube Q ∈ T , because deleting cubes in the tree with µ measure zero has no effect on the

graph rectifiability of µ Leaves(T ). As every µ null set is trivially graph rectifiable, we

may further assume that µ(Leaves(T )) > 0. The general scheme of the proof is to identify

countably many subtrees of T whose sets of leaves are each contained in a Lipschitz graph

and collectively cover µ almost all of the set of leaves of T .

We will say that a dyadic cube R ∈ T is bad if there exists Q ∈ T such that R ∈ ∆∗Q,X .

Bad cubes are the obstacles to invoking Lemma 2.2. Let us compute the total measure of

bad cubes in level i of the tree. There are no bad cubes in T0, because the first level only

contains one cube. Fix i ≥ 1 and let Bi denote the set of Q ∈ Ti such that there exists

R ∈ ∆∗Q,X ∩ T , i.e. the discretized conical annulus for Q contains a bad cube. Then∑
bad R∈Ti

µ(R) =
∑

bad R∈Ti

∑
Q∈∇∗R,X∩T

µ(R)µ(Q)

µ(
⋃
∇∗R,X ∩ T )

=
∑
Q∈Bi

∑
R∈∆∗Q,X∩T

µ(R)µ(Q)

µ(
⋃
∇∗R,X ∩ T )

≤
∑
Q∈Bi

∑
R∈∆∗Q,X

µ(R)µ(Q)

µ(Q)
≤
∑
Q∈Ti

Defect(µ,Q,X)µ(Q),

(2.1)

where in the penultimate inequality 0 < µ(Q) ≤ µ(
⋃
∇∗R,X ∩ T ) because Q ∈ Bi and

Q ∈ ∇∗R,X for all R ∈ ∆∗Q,X . The first equality in (2.1) may be interpreted as equitably

distributing the mass of a bad cube R to the cubes Q ∈ ∇∗R,X ∩ T which “see” R.

Let 0 < δ < 1 be given. Because the weighted sum of the conical defect over T
converges, there exists i0 = i0(δ) ≥ 1 sufficiently large such that the tail

(2.2)
∞∑
i=i0

∑
bad R∈Ti

µ(R) ≤
∞∑
i=i0

∑
Q∈Ti

Defect(µ,Q,X)µ(Q) < δ µ(Leaves(T )).

Let Qδ
1, . . . , Q

δ
k be an enumeration of the cubes in Ti0 such that each cube Qδ

j is not bad.

Then let U δ1 , . . . ,U δk denote the maximal subtrees of T with Top(U δj ) = Qδ
j that contain

no bad cubes. By (2.2), the trees exist, and the set Aδ =
⋃k
j=1 Leaves(U δj ) satisfies

µ(Aδ) ≥ (1− δ)µ(Leaves(T )).

Moreover, by k applications of Lemma 2.2 (each U δj contains no bad cubes), Aδ is contained

in the union of k = k(δ) Lipschitz graphs over V of Lipschitz constant at most α.

To complete the proof, repeat the construction in the previous paragraph over any

countable choice of parameters δ = δj with limj→∞ δj = 0. �

Let T be a tree of dyadic cubes, let b : T → [0,∞) be any function, and let µ be a

Radon measure on Rn. Following [BS17, §5], we define the µ-normalized sum function

ST ,b(µ, x) =
∑
Q∈T

b(Q)
χQ(x)

µ(Q)
for all x ∈ Rn,
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with the convention that 0/0 = 0 and 1/0 = ∞. For example, for every dyadic cube Q0

of side length 1, the conical Dini function Gµ,X(x) = ST ,b(µ, x) for all x ∈ Q0, where T is

the tree of dyadic cubes contained in Q0 and b(Q) = Defect(µ,Q,X)µ(Q).

Lemma 2.4 (Localization Lemma, [BS17, Lemma 5.6]). Let T be a tree of dyadic cubes,

let b : T → [0,∞), and let µ be a Radon measure on Rn. For all N < ∞ and ε > 0,

there exists a partition of T into a set G of good cubes and a set B of bad cubes with

the following properties.

(1) Either G = ∅ or G is a tree of dyadic cubes with Top(G) = Top(T ).

(2) Every child of a bad cube is a bad cube: if P,Q ∈ T , P ∈ B, and Q ⊆ P , then

Q ∈ B.

(3) The set A = {x ∈ Top(T ) : ST ,b(x) ≤ N} is Borel and

µ(A ∩ Leaves(G)) ≥ (1− εµ(Top(T )))µ(A).

(4) The sum of b over G is finite:
∑

Q∈G b(Q) < N/ε.

Countably many applications of Proposition 2.3 and Lemma 2.4 yield the following

sufficient condition in terms of the conical Dini function for Lipschitz graph rectifiability

of a measure with prescribed direction V and Lipschitz constant α. Being similar to the

proof of [BS17, Theorem 5.1], we omit the details.

Theorem 2.5. Let µ be a Radon measure on Rn and let X = X(V, α) be a bad cone for

some V ∈ G(n,m) and α ∈ (0,∞). Then µ {x ∈ Rn : Gµ,X(x) < ∞} is carried by

graphs of Lipschitz functions f : V → V ⊥ of Lipschitz constant at most α.

3. Necessary Conditions

Recall that gap(S, T ) = inf{|s − t| : s ∈ S, t ∈ T} for all nonempty sets S, T ⊆ Rn.

We define the quantity excess(S, T ) = sups∈S inft∈T |s− t| ∈ [0,∞] for all nonempty sets

S, T ⊆ Rn. By convention, we also set excess(∅, S) = 0, but leave excess(S, ∅) undefined.

The Hausdorff distance between nonempty sets S and T is defined to be the maximum of

excess(S, T ) and excess(T, S).

To establish necessary conditions for Lipschitz graph rectifiability in terms of the conical

Dini functions, we follow the strategy used in [BS15, §3] and [BS17, §4] to prove necessary

conditions for a Radon measure to be carried by rectifiable curves. The argument must

be modified to incorporate the geometry of Lipschitz graphs.

Proposition 3.1. Let µ be a Radon measure on Rn and let X = X(V, α) be a bad cone

for some V ∈ G(n,m) and α ∈ (0,∞). Suppose that Γ = Graph(f) for some Lipschitz

function f : V → V ⊥ with Lipschitz constant at most α/2. There exists a constant

C = C(n, α) > 1 such that for every x0 ∈ Γ and r0 > 0,

(3.1)

∫
Γ∩B(x0,r0)

Gµ,X(x) dµ(x) .n,α µ(B(x0, r0 + C) \ Γ) <∞.

In particular, Gµ,X(x) <∞ at µ-a.e. x ∈ Γ.
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Proof. Let µ, V , α, f , Γ, x0, and r0 be fixed as in the statement of the lemma. Abbreviate

Γ0 = Γ ∩B(x0, r0). By Tonelli’s theorem,∫
Γ0

Gµ,X(x) dµ(x) =
∑

sideQ≤1

Defect(µ,Q,X)

∫
Γ0

χQ(x) dµ(x)

=
∑

sideQ≤1

Defect(µ,Q,X)µ(Γ0 ∩Q) ≤
∑

sideQ≤1

µ(Γ0∩Q)>0

Defect(µ,Q,X)µ(Q).

For any dyadic cube Q such that sideQ ≤ 1 and µ(Γ0 ∩Q) > 0,

Defect(µ,Q,X)µ(Q) =
∑

R∈∆∗Q,X

µ(R)

µ(Q)
µ(Q) = µ

(⋃
∆∗Q,X

)
,

where
⋃

∆∗Q,X denotes the union of all cubes in ∆∗Q,X Thus,∫
Γ0

Gµ,X(x) dµ(x) ≤
∑

sideQ≤1

µ(Γ0∩Q)>0

µ
(⋃

∆∗Q,X

)
.

We now aim to prove that the non-tangential regions TQ,X =
⋃

∆∗Q,X associated to dyadic

cubes with sideQ ≤ 1 and µ(Γ0∩Q) > 0 are contained in Rn\Γ and have bounded overlap.

This requires that we use the geometry of the Lipschitz graph Γ.

Let Q be a dyadic cube of side length at most 1 such that µ(Γ0∩Q) > 0. Pick a ∈ Γ0∩Q.

Because Γ is the graph of a Lipschitz function over V with Lipschitz constant at most

α/2, Lemma 1.1 tells us that the graph Γ is contained in Xa(V, α/2)c. By definition of

rQ,X or proof of Lemma 2.1, gap(R,Xa(V, α/2)c) ≥ diamQ for all R ∈ ∆∗Q,X . Hence

(3.2) gap(TQ,X ,Γ) ≥ gap(TQ,X , Xa(V, α/2)c) ≥ diamQ.

If R ∈ ∆∗Q,X , then there exists z ∈ R such that |z− xQ| ≤ rQ,X = 81 max(α, 1/α) diamQ.

For an arbitrary point y ∈ R, |y − a| ≤ |y − z|+ |z − xQ|+ |xQ − a|. Thus,

(3.3) excess(TQ,X ,Γ) ≤ excess(TQ,X , {a}) ≤ 83 max(α, 1/α) diamQ.

It follows that TQ,X ⊆ B(x0, r0 + 83
√
nmax(α, 1/α))\Γ. Furthermore, suppose that Q′ is

a dyadic cube of side length 2−N sideQ such that µ(Γ0∩Q′) > 0. By (3.2) and (3.3), TQ,X
and TQ′,X are disjoint if 2−N83 max(α, 1/α) < 1. Thus, if TQ,X ∩ TQ′,X 6= ∅, where TQ,X
and TQ′,X are non-tangential regions associated to dyadic cubes Q and Q′ intersecting Γ0

of side lengths 2−λ and 2−λ
′

at most 1, then |λ − λ′| ≤ C(n, α). Another consequence

of (3.3) is that diamTQ,X ≤ 166 max(α, 1/α) diamQ. It follows that we have bounded

overlap of the non-tangential regions: TQ,X intersects TQ′,X for at most C(n, α) other

cubes Q′ with sideQ′ ≤ 1 and µ(Γ0 ∩Q′) > 0. Therefore,∫
Γ0

Gµ,X(x) dµ(x) ≤
∑

sideQ≤1

µ(Γ0∩Q)>0

µ (TQ,X) .n,α µ(B(x0, r0 + 83
√
nmax(α, 1/α)) \ Γ).

The last displayed quantity is finite, because µ is a Radon measure. This verifies that

(3.1) holds for all x0 ∈ Γ and r0 > 0. Hence the conical Dini function Gµ,X(x) < ∞ at
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µ-a.e. x ∈ Γ0 = Γ ∩ B(x0, r0). Because r0 > 0 was arbitrary and Γ ⊆
⋃∞
k=1B(x0, k), we

conclude that Gµ,X(x) <∞ at µ-a.e. x ∈ Γ. �

Theorem 3.2. Let µ be a Radon measure on Rn. Suppose V ∈ G(n,m) and α ∈ (0,∞).

If µ is carried by graphs of Lipschitz functions f : V → V ⊥ of Lipschitz constant at most

α and β ≥ 2α, then Gµ,X(V,β)(x) <∞ at µ-a.e. x ∈ Rn.

Proof. The hypothesis asserts that there exist Lipschitz functions f1, f2, · · · : V → V ⊥

with Lipschitz constant at most α such that µ(Rn\
⋃∞

1 Γi) = 0, where each Γi = Graph(fi).

Let β ≥ 2α, so that each function fi has Lipschitz constant at most β/2. By Proposition

3.1, for each i ≥ 1, there exists a set Ni ⊆ Γi such that µ(Ni) = 0 and Gµ,X(V,β)(x) <∞
at every x ∈ Γi \Ni. Set E =

⋃∞
1 Γi \Ni. Then Gµ,X(V,β)(x) <∞ for every x ∈ E and

µ(Rn \ E) ≤ µ

(
Rn \

∞⋃
1

Γi

)
+
∞∑
1

µ(Ni) = 0. �

4. Proof of the Main Theorem

Let 1 ≤ m ≤ n− 1 and let µ be a Radon measure on Rn. Existence and uniqueness of

the decomposition is standard.

Lemma 4.1. There exists a unique decomposition µ = µG + µ⊥G, where µG is a Radon

measure that is carried by m-dimensional Lipschitz graphs and µ⊥G is a Radon measure

that is singular to m-dimensional Lipschitz graphs.

Proof. The decomposition follows from a simple modification of the usual proof of the

Lebesgue decomposition theorem. For each integer r ≥ 2, use the approximation property

of the supremum to choose a set Γr, which is a finite union of m-dimensional Lipschitz

graphs, such that

µ(Γr) ≥ (1− 1/r) sup
Γ
µ(Γ ∩B(0, r)) <∞,

where the supremum ranges over all sets Γ, which are finite unions of m-dimensional

Lipschitz graphs in Rn. Then µG = µ
⋃∞
r=2 Γr and µ⊥G = µ − µG. Uniqueness of the

decomposition can be proved by contradiction. For full details, see e.g. the appendix of

[BV19]. �

The content of Theorem 1.5 over Lemma 4.1 and our task in the remainder of the proof

is to identify the component measures µG and µ⊥G using the conical Dini functions.

Lemma 4.2. For every bad cone X, the conical Dini function Gµ,X is Borel measurable.

Proof. By definition, each conical Dini function Gµ,X is a countable linear combination of

characteristic functions of Borel sets. �

Lemma 4.3. There exists a countable family X (n,m) of bad cones (independent of µ)

such that Gµ,X(x) <∞ at some x ∈ Rn for some bad cone X if and only if Gµ,X′(x) <∞
for some X ′ ∈ X (n,m).
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Proof. The value of a conical Dini function Gµ,X(x) is determined by the value of the

measure on dyadic cubes Q and R ∈ ∆∗Q,X , where Q ranges over all dyadic cubse of side

length at most 1 that contains x. The cubes belonging to ∆∗Q,X for any particular Q

are completely determined by xQ, sideQ, and the arrangement of cubes in ∆∗Q0,X
, where

Q0 = [0, 1) × · · · × [0, 1). By Lemma 2.1, the cubes in ∆∗Q0,X
are dyadic cubes of side

length 1 contained in B(xQ0 , C(n, α)), where for each integer N ≥ 1, the constant C(n, α)

is uniformly bounded for all α ∈ (1/N,N). Therefore, there are only countably many

possible configurations of ∆∗Q,X . Define X (n,m) by including exactly one bad cone X for

each possible configuration of ∆∗Q0,X
. �

We are ready to complete the proof of Theorem 1.5. Let µ1 and µ2 be the measures

defined by

µ1 = µ {x ∈ Rn : Gµ,X(x) <∞ for some bad cone X},
µ2 = µ {x ∈ Rn : Gµ,X(x) =∞ for every bad cone X}.

By Lemma 4.3, we may alternatively express

µ1 = µ {x ∈ Rn : Gµ,X(x) <∞ for some X ∈ X (n,m)},
µ2 = µ {x ∈ Rn : Gµ,X(x) =∞ for every X ∈ X (n,m)}.

In view of Lemma 4.2, we conclude that µ1 and µ2 are restrictions of a Radon measure

to a Borel set. Hence µ1 and µ2 are Radon.

On the one hand, for each bad cone X, µG,X = µ {x ∈ Rn : Gµ,X(x) < ∞} is

carried by m-dimensional Lipschitz graphs by Theorem 2.5. Because X (n,m) is countable,

µ+ =
∑

X∈X (n,m) µG,X is also carried by Lipschitz graphs. By Lemma 4.3, µ1 ≤ µ+. Thus,

µ1 is carried by m-dimensional Lipschitz graphs, because the dominant measure µ+ is

carried by Lipschitz graphs.

On the other hand, let Γ be an arbitrary m-dimensional Lipschitz graph, say that

Γ = Graph(f) where f is a Lipschitz function f : V → V ⊥ with Lipschitz constant at

most α. By Proposition 3.1, Gµ,X(V,2α)(x) <∞ at µ-a.e. x ∈ Γ. Because µ2 ≤ µ, we have

Gµ,X(V,2α)(x) < ∞ at µ2-a.e. x ∈ Γ, as well. By definition, the measure µ2 vanishes on

{x ∈ Rn : Gµ,X(V,2α)(x) <∞}. Therefore, µ2(Γ) = 0. Since Γ was arbitrary, we conclude

that µ2 is singular to m-dimensional Lipschitz graphs.

It is immediate from the definition of µ1 and µ2 that µ = µ1 + µ2. Since µ1 and µ2 are

Radon measures, µ1 is carried by m-dimensional Lipschitz graphs, and µ2 is singular to

m-dimensional Lipschitz graphs, we know that µ1 = µG and µ2 = µ⊥G by uniqueness of

the decomposition in Lemma 4.1. This completes the proof of Theorem 1.5.

5. Variations

We conclude with some remarks on flexibility in the definition of the conical defect and

variations on the main theorem. The restriction to half-open dyadic cubes is hidden in

the proof of the localization lemma for the µ-normalized sum function (see Lemma 2.4).

The lemma remains valid for any system of sets A with the property that if T is a tree of
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sets in A and B is a subset of T such that A,B ∈ B and A ⊆ B implies A = B, then B
has bounded overlap with constants independent of B and T . Of course, half-open dyadic

cubes, half-open triadic cubes, etc. enjoy this property with bounded overlap 1. One could

probably design a version of the conical defect and main theorem with Euclidean balls by

using the Besicovitch covering theorem instead of the localization lemma.

The main theorem remains valid if one replaces the conical defect by the larger quantity∑
R∈∆∗Q,X

µ(SR)

µ(Q)
,

where SR is any Borel set containing R with diameter at most C diamR for some constant

1 ≤ C <∞ independent of R. This change requires increasing the size of the radius rQ,X
depending on the constant C to ensure that gap(SR, X(V, γ)c) & diamQ for some γ < α.

Because the sets SR may overlap, this is a slight strengthening of the necessary condition

for Lipschitz graph rectifiability.

If one prefers a construction where the radius rQ,X of the conical annulus is independent

of the cone opening α, this can be achieved at the cost of taking the cubes R ∈ ∆∗Q,X to

have side length smaller than Q. In particular, there exists r̃Q,X depending only on n and

a jump parameter J ∈ N depending on n and α with the following property. If R is a

dyadic cube of side length 2−J sideQ that intersects XQ∩B(xQ, r̃Q,X)\B(xQ, r̃Q,X/3), then

R∩B(xQ, r̃Q,X/4) = ∅ and gap(R,X(V, α/2)c) ≥ diamR. The proofs of the sufficient and

necessary conditions with this modification are essentially the same as above, although

there is more bookkeeping involving J .

Every m-dimensional plane x0 +V is a Lipschitz graph over V with constant at most α

for every α > 0. It follows that µ {x ∈ Rn : ∀V ∈G(n,m)∃α>0Gµ,X(V,α) =∞} is singular to

affine m-dimensional planes. However, this cannot be directly used to characterize Radon

measures that are carried by or singular to planes. We leave finding such a characterization

as an open problem for future research.

References

[AAM19] Murat Akman, Jonas Azzam, and Mihalis Mourgoglou, Absolute continuity of harmonic

measure for domains with lower regular boundaries, Adv. Math. 345 (2019), 1206–1252.

MR 3903916

[ADT16] Jonas Azzam, Guy David, and Tatiana Toro, Wasserstein distance and the rectifiability of

doubling measures: part I, Math. Ann. 364 (2016), no. 1-2, 151–224. MR 3451384

[ADT17] Jonas Azzam, Guy David, and Tatiana Toro, Wasserstein distance and the rectifiability of

doubling measures: part II, Math. Z. 286 (2017), no. 3-4, 861–891. MR 3671564
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